Multiple Classifier Combination For Recognition Of Wheat Leaf Diseases

نویسندگان

  • Yuan Tian
  • Chunjiang Zhao
  • Shenglian Lu
  • Xinyu Guo
چکیده

Wheat industry is an important constituent of Northern China’s overall agricultural economy. Proper disease detection using computer vision and pattern recognition has being investigated to minimize the loss, and finally achieve intelligent healthy farming. This paper proposes a new strategy of Multi-Classifier System based on SVM (support vector machine) for pattern recognition of wheat leaf diseases for higher recognition accuracy. Diseased leaf samples with Powdery Mildew, Rust Puccinia Triticina, Leaf Blight, Puccinia Striiformis were collected in the field and images were captured before a uniform black background. Three feature sets including color feature set, shape feature set and texture feature set were created for classification analysis. The proposed combination strategy was based on stacked generalization and included twolevel structure: base-level was a module of three kinds of SVM-based classifiers trained by three feature sets and meta-level was one module of SVM-based decision classifier trained by meta-feature set which are generated through a new data fusion mechanism. Compared with other single classifiers and other strategy of classifier ensembles for wheat leaf diseases, this approach is more flexible and has higher success rate of recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier

This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Theoretical Investigation of Dependable Computing

This issue includes fifteen papers selected from the 2010 Conference on Dependable Computing (CDC2010). The papers in this issue mainly focus on the theoretical investigation of Dependable Computing. Thorough theoretical investigation is the cornerstone of successful applications. It is an excitement to have all experts, professionals and scholars share their creative thoughts and inspirations ...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Intelligent Automation & Soft Computing

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011